direct product, p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C2×C22≀C2, C25⋊1C2, C23⋊5D4, C23⋊1C23, C24⋊6C22, C22.15C24, (C2×C4)⋊1C23, C22⋊3(C2×D4), (C2×D4)⋊9C22, (C22×D4)⋊3C2, C2.4(C22×D4), (C22×C4)⋊5C22, C22⋊C4⋊12C22, (C2×C22⋊C4)⋊8C2, SmallGroup(64,202)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22≀C2
G = < a,b,c,d,e,f | a2=b2=c2=d2=e2=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, fbf=bd=db, be=eb, cd=dc, fcf=ce=ec, de=ed, df=fd, ef=fe >
Subgroups: 569 in 331 conjugacy classes, 105 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C22×C4, C2×D4, C2×D4, C24, C24, C24, C2×C22⋊C4, C22≀C2, C22×D4, C25, C2×C22≀C2
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22≀C2, C22×D4, C2×C22≀C2
Character table of C2×C22≀C2
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 2P | 2Q | 2R | 2S | 2T | 2U | 4A | 4B | 4C | 4D | 4E | 4F | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ15 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ17 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ22 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ23 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ24 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ25 | 2 | -2 | -2 | -2 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ26 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ27 | 2 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ28 | 2 | -2 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
(1 3)(2 4)(5 12)(6 11)(7 14)(8 13)(9 15)(10 16)
(1 5)(2 6)(3 12)(4 11)(7 9)(8 10)(13 16)(14 15)
(1 5)(2 6)(3 12)(4 11)(7 15)(8 16)(9 14)(10 13)
(1 12)(2 11)(3 5)(4 6)(7 14)(8 13)(9 15)(10 16)
(1 10)(2 9)(3 8)(4 7)(5 13)(6 14)(11 15)(12 16)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,3)(2,4)(5,12)(6,11)(7,14)(8,13)(9,15)(10,16), (1,5)(2,6)(3,12)(4,11)(7,9)(8,10)(13,16)(14,15), (1,5)(2,6)(3,12)(4,11)(7,15)(8,16)(9,14)(10,13), (1,12)(2,11)(3,5)(4,6)(7,14)(8,13)(9,15)(10,16), (1,10)(2,9)(3,8)(4,7)(5,13)(6,14)(11,15)(12,16)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,3)(2,4)(5,12)(6,11)(7,14)(8,13)(9,15)(10,16), (1,5)(2,6)(3,12)(4,11)(7,9)(8,10)(13,16)(14,15), (1,5)(2,6)(3,12)(4,11)(7,15)(8,16)(9,14)(10,13), (1,12)(2,11)(3,5)(4,6)(7,14)(8,13)(9,15)(10,16), (1,10)(2,9)(3,8)(4,7)(5,13)(6,14)(11,15)(12,16) );
G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)], [(1,3),(2,4),(5,12),(6,11),(7,14),(8,13),(9,15),(10,16)], [(1,5),(2,6),(3,12),(4,11),(7,9),(8,10),(13,16),(14,15)], [(1,5),(2,6),(3,12),(4,11),(7,15),(8,16),(9,14),(10,13)], [(1,12),(2,11),(3,5),(4,6),(7,14),(8,13),(9,15),(10,16)], [(1,10),(2,9),(3,8),(4,7),(5,13),(6,14),(11,15),(12,16)]])
G:=TransitiveGroup(16,105);
C2×C22≀C2 is a maximal subgroup of
C25.C22 C24.78D4 C24⋊D4 C23.203C24 C23.240C24 C23.257C24 C24⋊7D4 C23.304C24 C23.308C24 C24⋊8D4 C23.311C24 C24.95D4 C23.318C24 C23.324C24 C23.333C24 C23.372C24 C23.434C24 C23.439C24 C24⋊9D4 C24⋊10D4 C24.97D4 C23.568C24 C23.569C24 C23.570C24 C23.578C24 C25⋊C22 C23.584C24 C23.585C24 C23.597C24 C24⋊11D4 C23≀C2 C24⋊13D4 C24.166D4 C2×D42 C22.73C25 C22.79C25 C42⋊C23
C2×C22≀C2 is a maximal quotient of
C23.288C24 C24⋊7D4 C23.304C24 C24.94D4 C24.243C23 C24.244C23 C23.308C24 C23.309C24 C24⋊8D4 C24.262C23 C24.263C23 C24.264C23 C23.333C24 C23.334C24 C23.335C24 C24.565C23 C24⋊9D4 C23.514C24 C24.360C23 C24.361C23 C23≀C2 C24⋊13D4 C24⋊8Q8 C24.166D4 C24.103D4 C24.177D4 C24.178D4 C24.104D4 C24.105D4 C24.106D4 C4○D4⋊D4 D4.(C2×D4) (C2×Q8)⋊16D4 Q8.(C2×D4) (C2×D4)⋊21D4 (C2×Q8)⋊17D4 C42.313C23 M4(2)⋊C23 M4(2).C23 C42.12C23 C42.13C23 C23.7C24 C24⋊C23 C23.9C24 C23.10C24
Matrix representation of C2×C22≀C2 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
0 | -1 | 0 | 0 | 0 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[0,-1,0,0,0,0,-1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C2×C22≀C2 in GAP, Magma, Sage, TeX
C_2\times C_2^2\wr C_2
% in TeX
G:=Group("C2xC2^2wrC2");
// GroupNames label
G:=SmallGroup(64,202);
// by ID
G=gap.SmallGroup(64,202);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,2,217,650]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^2=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,f*b*f=b*d=d*b,b*e=e*b,c*d=d*c,f*c*f=c*e=e*c,d*e=e*d,d*f=f*d,e*f=f*e>;
// generators/relations
Export